
A Stability Analysis of a Semi-implicit
Runge–Kutta Scheme for a Nonlinear System

A. Chertock and T. Izgin and P. Öffner

Abstract The semi-implicit Runge–Kutta (SI-RK) methods proposed in [2] have
been successfully applied as time-integration methods in the context of the shallow
water equations. The schemes preserve the sign of the analytical solution and are
of higher order (> 1). As a result, they do not belong to the class of general linear
methods [1], which implies that their stability analysis becomes more complex.
In this short note, we investigate the stability properties of the second-order SI-
RK method when applied to a nonlinear test problem. For this analysis, we take
advantage of recently developed criteria capturing the Lyapunov stability properties
of non-hyperbolic fixed points. Thereby, a stability function is derived and analyzed.
In particular, we derive time step restrictions related to the SI-RK scheme’s stability
properties. Finally, we validate our theoretical findings with numerical tests.

1 Introduction

Numerical time-stepping methods applied to differential equations

y′(t) = f(y(t)) (1)

with an initial condition y(0) = y0 aim to approximate the analytic solution if it exists.
The goal is to carry out asmany properties of the analytic solution at the discrete level
as possible. For instance, steady-state solutions of (1) should correspond to fixed
points of the numerical scheme. A numerical scheme with this property is called
steady state preserving. Moreover, the analytic solution of (1) is called positive, if
y(t) > 0 holds for all t > 0 whenever y(0) > 0. A numerical method discretely
reproducing this property, i. e. yn > 0 for all n ∈ N and ∆t > 0 whenever y0 > 0,
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is called unconditionally positive. Finally, the stability properties of fixed points
of a steady state preserving method applied to (1) should be identical to those of
the corresponding steady state solutions. The corresponding notions of stability are
given in the following definitions.

Definition 1 Let y∗ ∈ RN be a steady state solution of a differential equation y′ =
f(y), that is f(y∗) = 0.

a) Then y∗ is called Lyapunov stable if, for any ε > 0, there exists a δ = δ(ε) > 0
such that ‖y(0) − y∗‖ < δ implies ‖y(t) − y∗‖ < ε for all t ≥ 0.

b) If in addition to a), there exists a constant c > 0 such that ‖y(0)−y∗‖ < c implies
‖y(t) − y∗‖ → 0 for t →∞, we call y∗ asymptotically stable.

c) A steady state solution that is not Lyapunov stable is said to be unstable.

Let y∗ be a fixed point of an iteration scheme yn+1 = g(yn), that is y∗ = g(y∗).

a) Then y∗ is called Lyapunov stable if, for any ε > 0, there exists a δ = δ(ε) > 0
such that

y0 − y∗
 < δ implies ‖yn − y∗‖ < ε for all n ≥ 0.

b) If in addition to a), there exists a constant c > 0 such that ‖y0 − y∗‖ < c implies
‖yn − y∗‖ → 0 for n→∞, we call y∗ asymptotically stable.

c) A fixed point that is not Lyapunov stable is said to be unstable.

We use stability instead of Lyapunov stability throughout the manuscript. For a
compact notation, we also introduce a matrix A ∈ RN×N and vectors n1, . . . ,nk with
k ≥ 1 which form a basis of ker(AT) and define the matrix N ∈ Rk×N whose rows
are nT

1 , . . . ,n
T
k
.

The following two theorems have already been used to investigate the stability
properties of several schemes [4, 5, 9] and will be used in our analysis.

Theorem 1 ([11, Theorem 1.3.7]) Let yn+1 = g(yn) be an iteration scheme with
fixed point y∗. Suppose the Jacobian Dg(y∗) exists and denote its spectral radius by
%(Dg(y∗)). Then

a) y∗ is asymptotically stable if %(Dg(y∗)) < 1.
b) y∗ is unstable if %(Dg(y∗)) > 1.

Theorem 2 ([7, Theorem 2.9]) Let A ∈ RN×N such that ker(A) = span(v1, . . . ,vk)
represents a k-dimensional subspace of RN with k ≥ 1. Also, let y∗ ∈ ker(A) be
a fixed point of g : D → D where D ⊆ RN contains a neighborhood D of y∗.
Moreover, let any element of ker(A) ∩ D be a fixed point of g and suppose that
g
��
D
∈ C1 as well as that the first derivatives of g are Lipschitz continuous on D.

Then Dg(y∗)vi = vi for i = 1, . . . , k and the following statements hold.

a) If the remaining N − k eigenvalues of Dg(y∗) have absolute values smaller than
1, then y∗ is stable.

b) Let H = {y ∈ RN | Ny = Ny∗} and g conserve all linear invariants, which
means that g(y) ∈ H ∩ D for all y ∈ H ∩ D. If additionally the assumption of a)
is satisfied, then there exists a δ > 0 such that y0 ∈ H ∩ D and

y0 − y∗
 < δ

imply yn → y∗ as n→∞.



Stability Analysis of the SI-RK2 Scheme 3

2 Preliminaries

In this paper, we investigate the stability properties of the second-order semi-implicit
Runge–Kutta (SI-RK2) scheme developed in [2],

SI-RK2:

y
(1)
i =

yni + ∆t(ynj )
2

1 + ∆tyni
, y

(2)
i =

1
2
yni +

1
2

y
(1)
i + ∆t(y(1)j )

2

1 + ∆ty(1)i

,

yn+1
i =

y
(2)
i + ∆t2(y

(2)
j )

2y
(2)
i

1 + ∆t2(y
(2)
i )

2
for i, j ∈ {1,2} and i , j .

(2)

To this end, we focus on a test initial value problem (also considered in [8])

y′(t) = f(y) =
(
y2

2−y
2
1

y2
1−y

2
2

)
, y(0) = y0 =

(
y0

1
y0

2

)
> 0. (3)

The analytical solution of (3) is given by

y(t) =
1
2
(y0

1 + y0
2)1 +

1
2

(
y0 −

(
y0

2
y0

1

))
e−2(y0

1+y
0
2 )t, (4)

where 1 = (1,1)T. It is straightforward to see that the exponential term in (4) vanishes
for positive initial conditions as t →∞ and one can describe the set of positive steady
states of (3) by the intersection span(1) ∩ R2

>0:

y∗ = c1, c =
1
2
(y0

1 + y0
2) > 0. (5)

It can be proven that all positive steady states are stable in the sense of Definition
1 choosing δ = ε, see [8]. Note that no y∗ in (5) is asymptotically stable since
the positive steady states lie on a curve in R2. Hence, there are infinitely many
steady states in every neighborhood of any steady state. Altogether, we see that y∗
is a stable steady state solution of the test problem (3) but y∗ is not asymptotically
stable. We hence seek to come across similar stability properties when analyzing the
corresponding fixed points of the SI-RK2 method (2).

3 Main Result

In this section, we present ourmain result wherewe use the theorems above to analyze
the stability of the SI-RK2 method (2) when applied to (3). We note that in our case
the matrix A =

( 1 −1
−1 1

)
= AT satisfies ker(A) = span(1) ⊆ {y ∈ RN | f(y) = 0}

and it is sufficient to prove g ∈ C2 rather than that g ∈ C1 has locally Lipschitz
first derivatives, [6, 7]. As the result of [7, Remark 2.10] it remains to check, if the
function g generating the SI-RK2 for problem (2)
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(i) is in C2,
(ii) satisfies g(y∗) = y∗, where y∗ = c1 for all c > 0, and in particular for c as in (5),
(iii) has a Jacobian with a spectrum σ(Dg(y∗)) = {1,R} with |R| < 1 (in order to

apply part a) Theorem 2, or |R| > 1 for part b) of Theorem 1),
(iv) satisfies 1Tg(yn) = 1Tyn for all yn > 0 (in order to apply part b) of Theorem 2).

We derive the stability function of the SI-RK2 method, by first introducing the
functionsΦ1 : R2

>0 → R
2
>0,Φ2 : R2

>0 × R
2
>0 → R

2
>0 andΦn+1 : R2

>0 → R
2
>0, whose

components are defined by

(Φ1(x))i =
xi + ∆t(xj)2

1 + ∆t xi
, (Φ2(x,y))i =

1
2

xi +
1
2
(Φ1(y))i,

(Φn+1(x))i =
xi + ∆t2(xj)2xi

1 + ∆t2(xi)2
for i, j ∈ {1,2} and i , j,

(6)

so that y(1) = Φ1(yn), y(2) = Φ2(yn,Φ1(yn)) and

yn+1 = Φn+1(Φ2(yn,Φ1(yn))) = g(yn) (7)

follow from (2). With that in mind, we see that (i) is satisfied since g is a composition
of C2-maps for positive arguments.

Secondly for proving (ii), we substitute a steady state yn = y∗ = c1 into (2) and
find ynj = yni for i, j ∈ {1,2}. As a result, we obtain

(Φ1(y∗))i = y∗i , (Φ2(y∗,Φ1(y∗)))i = (Φ2(y∗,y∗))i =
1
2
y∗i +

1
2
(Φ1(y∗))i = y∗i ,

gi(y∗) = (Φn+1(Φ2(y∗,Φ1(y∗))))i = (Φn+1(y∗))i = y∗i .
(8)

Next, we note that (iv) is not satisfied. To see this, we choose yn = (1,3)T and
∆t = 1 which implies 1Tyn = 4 (and thus y∗ = 2 · 1). A small calculation reveals
that y(1) = (5,1)T, y(2) = (1,8)T, and thus g(yn) = (32.5,8)T, which implies that
1Tg(yn) = 40.5 , 1Tyn. Moreover, these values for g suggest that we will come
across time step restrictions for guaranteeing stability.

Now since (iv) is not satisfied, we cannot apply part b) of Theorem 2 to show
the local convergence to the correct steady state solution as 1Ty∗ = 1Ty0 follows
from (5) implying that g does not conserve all linear invariants. Nevertheless, we
may apply part a) of Theorem 2 or part b) of Theorem 1 to investigate the stability
properties of y∗ as a fixed point of the mapping g. We have to compute the spectrum
of Dg(y∗). Note that Φ2 = Φ2(x,y) is a function of two vectors so that we can
introduce DxΦ(x0,y0) =

∂Φ
∂x (x0,y0), DyΦ(x0,y0) =

∂Φ
∂y (x0,y0). Hence, it follows

from (7), (8) and the chain rule that

Dg(y∗) = DΦn+1(y∗)
(
DxΦ2(y∗,y∗),DyΦ2(y∗,y∗)

) (
I

DΦ1(y∗)

)
= DΦn+1(y∗)

(
DxΦ2(y∗,y∗) + DyΦ2(y∗,y∗)DΦ1(y∗)

)
.

(9)
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Introducing the matrix B =
(
−1 2

2 −1
)
, we find from (6) and y∗ = c1 that

DΦ1(y∗) =
©«

1+∆ty∗1−y
∗
1 (1+∆ty

∗
1 )∆t

(1+∆ty∗1 )
2

2∆ty∗2
1+∆ty∗1

2∆ty∗1
1+∆ty∗2

1+∆ty∗1−y
∗
1 (1+∆ty

∗
1 )∆t

(1+∆ty∗1 )
2

ª®¬ =
( 1−c∆t

1+c∆t
2c∆t

1+c∆t
2c∆t

1+c∆t
1−c∆t
1+c∆t

)
=

I + c∆tB
1 + c∆t

.

Furthermore, it is straightforward to see that DxΦ2(y∗,y∗) = 1
2 I, DyΦ2(y∗,y∗) =

1
2 DΦ1(y∗). Finally, introducing C =

(
−1 1

1 −1
)
, we compute the Jacobian of Φn+1

which reads

DΦn+1(y∗) =

(
1 − 2c2∆t2

1+c2∆t2
2c2∆t2

1+c2∆t2
2c2∆t2

1+c2∆t2 1 − 2c2∆t2

1+c2∆t2

)
= I + 2c2∆t2

1+c2∆t2 C.

Altogether, (9) yields

Dg(y∗) =
(
I + 2c2∆t2

1+c2∆t2 C
) 1

2

(
I +

(
1

1 + c∆t
(I + c∆tB)

)2
)

(10)

Note that By∗ = y∗ and Cy∗ = 0, which implies

Dg(y∗)y∗ =
1
2

(
1 +

(
1

1 + c∆t
(1 + c∆t)

)2
)

y∗ = y∗.

Similarly, defining ȳ = (1,−1)T, we see that Bȳ = −3ȳ and Cȳ = −2ȳ. Thus,

Dg(y∗)ȳ =
(
1 − 2 2c2∆t2

1+c2∆t2

) 1
2

(
1 +

(
1

1 + c∆t
(1 − 3c∆t)

)2
)

ȳ

Hence, using Theorem 2 and substituting z = ∆tc, we have to analyze the stability
function

R(z) =
1
2

(
1 −

4z2

1 + z2

) (
1 +
(1 − 3z)2

(1 + z)2

)
=
−15z4 + 6z3 + 2z2 − 2z + 1

(z2 + 1)(z + 1)2
(11)

for z > 0. Indeed, we obtain our main result stated in the following theorem.

Theorem 3 The stability function R from (11) satisfies R(0) = 1, R(1) = −1 and
R′(z) < 0 for all z > 0. In particular, z = 1 is the only positive solution to |R(z)| = 1.
Furthermore, we have |R(z)| < 1 for z ∈ (0,1) and |R(z)| > 1 for z > 1.

Proof R(0) = 1 is trivial and we find R(1) = −15+6+2−2+1
2·22 = −8

8 = −1. Through a
small calculation, the first derivative of R can be computed according to

R′(z) = 4
−9z5 − 7z4 − 12z3 + 4z2 + z − 1

(z2 + 1)2(z + 1)3
.
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Since the denominator is positive for z > 0, we show that the numerator p(z) =
−9z5 − 7z4 − 12z3 + 4z2 + z − 1 is negative on R+. To see this, we first point out that
for z = 0, the numerator is negative; hence, this is even true for small positive values
of z. By applying Sturm’s theorem (cf. [3, Theorem 8.8.14]), we demonstrate that
the numerator has no positive zeros. For this, we first compute the Sturm chain of p
consisting of a sequence of polynomials p0, p1, . . . such that p0 = p, p1 = p′, pi+1 =

− rem(pi−1, pi), i ≥ 1, where rem(pi−1, pi) denotes the remainder of the Euclidean
division of pi−1 by pi . The sequence stops at a constant polynomial pk and the
polynomials might be scaled with a positive number to avoid fractions and to obtain
coprime coefficients. In our case, we find p1(z) = p′(z) = −45z4−28z3−36z2+8z+1.
A technical but elementary computation yields

p2(z) = 221z3 − 198z2 − 31z + 58, p3(z) = 22471z2 − 2220z − 4109,
p4(z) = 1878z − 6059, p5(z) = −1.

To apply Sturm’s theorem, we compute the signs of pi(0) and limz→∞ pi(z), corre-
sponding to the sign of the leading coefficient, for i = 0, . . . ,5. The sequence of signs
of pi(0) is (−,+,+,−,−,−), where two sign changes occur; one from − to + and one
from + to −. The other sequence reads (−,−,+,+,+,−), where two sign changes can
also be observed. Sturm’s theorem now states that the difference of sign changes of
the two sequences is equal to the number of positive zeros of p, which in this case
is zero. Hence, p has no positive zeros and is negative for small positive z, proving
that p(z) < 0 for all z > 0. This means that R′(z) < 0 for all z > 0 showing the
remaining claims of the theorem. �

Theorems 1 and 2, together with our main result, imply the following time step
restriction to ensure stability.

Corollary 1 Let y∗ = c1 with c > 0 be a positive steady state of the differential
equation (3). Then y∗ is a stable fixed point of the SI-RK2 scheme if c∆t < 1. If
c∆t > 1, then y∗ is an unstable fixed point of the SI-RK2 method.

According to [10, Theorem 1], a necessary condition for avoiding oscillations is a
strictly positive stability function, for which the following statement is helpful.

Corollary 2 The only positive root of the stability function R given in (11) is z∗ =
√

3
3 .

Proof Due to Theorem 3, there exists only one positive root. Using the factored
version of R from (11), we find 1− 4(z∗)2

1+(z∗)2 = 1−
12
9

1+ 3
9
= 0,which proves R(z∗) = 0.�

4 Numerical Experiments

In this section, we numerically validate the statements of Corollary 1 and the result
[10, Theorem 1], where instead of |R(z)| < 1 one requires even 0 < R(z) < 1 as a
necessary condition for avoiding oscillations.We solve the test problem (3) subject to
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several initial condirtions using the SI-RK2 method with different time steps. To get
an insight if the time step restrictions from Corollary 1 are severe, we also estimate
the time t∗ at which ‖y(t∗) − y∗‖∞ = 10−15 holds. This condition is equivalent to

1
2

(
y0 −

(
y0

2
y0

1

))
e−2(y0

1+y
0
2 )t
∗


∞

= 10−15 ⇒ t∗ =
ln

(
1015 |y

0
1−y

0
2 |

2

)
2(y0

1 + y0
2)

,

in the case of positive y0 < span(y∗). In the following experiments, we consider the
initial conditions of the form

y0 = c1 + εȳ = (c + ε, c − ε)T (12)

with c ∈ {1,5} and ε ∈ {10−1,10−5}. As a result we can rewrite t∗ in terms
of c and ε obtaining t∗(c, ε) =

ln(1015ε)
4c . Note that according to (5), the steady

state solution is y∗ = c1, and hence, Corollary 1 states that y∗ is stable for ∆t <
1
c = ∆t∗ while it is unstable for ∆t > ∆t∗. Unfortunately, the local convergence
towards y∗ is not guaranteed, so the error cannot be expected to approach 10−16.
Nevertheless, Lyapunov’s stable fixed points have the property that the error is
bounded, which might not be true for unstable fixed points. Furthermore, since these
stability properties are local, we expect to see the impact of varying the time step size
∆t∗ the better, the closer we choose y0 to y∗. To illustrate these stability properties,
we provide for all four combinations of (c, ε) pairs mentioned above two plots using
∆t1,2 = ∆t∗ ± ε = 1

c ± ε, i. e. ∆t1 > ∆t∗ and ∆t2 < ∆t∗. Note that by these choices of
time step sizes, we vary ∆t∗ less the closer y0 is to y∗, i. e. the smaller ε is.

In Figures 1–4, we plot the absolute error erri = |yni − yi(n∆t)|, where yni , i = 1,2,
is the numerical solution obtained by SI-RK2 and yi(n∆t) is the exact solution of
the initial-value problem (3), (12) as a function of time. It can be observed that the
theoretical claims are well reflected as the error is bounded when ∆t = ∆t2 and
unbounded if ∆t = ∆t1. It is also worth mentioning that in all cases, the time step
is smaller than the respective t∗(c, ε). Moreover, in Figures 1b, 3b, 2b and 4b, a
global minimum of the error curves can be observed. This is due to the fact that
the numerical approximation is close to the correct steady state at some point but
eventually converges to a different vector; see, for instance, Figure 5a. However, better
performance of the numerical scheme can be expected according to [10, Theorem
1] when we choose ∆t such that R(c∆t) > 0. Due to R(0) = 1 and Corollary 2,
this is the case if and only if c∆t < z∗ =

√
3

3 . In Figure 5b and 5c, one can see that
the numerical approximation indeed does not show oscillatory behavior and that the
error is bounded by 10−10 rather than 10−5 as it is for ∆t = ∆t2, see Figure 3b.

5 Summary and Conclusion

In this work, we analyzed the second-order semi-implicit Runge–Kutta method when
applied to a system of two differential equations with a nonlinear right-hand side.
Thereby, we discovered time step restrictions coming from the Lyapunov stability
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Fig. 1: Error as a function of time for the case of c = 1, ε = 10−1, t∗(c, ε) ≈ 8.06.
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Fig. 2: Error as a function of time for the case of c = 5, ε = 10−1, t∗(c, ε) ≈ 1.61.

analysis of the fixed points of the method. We have performed several numerical
experiments that confirm the theoretical claims. Moreover, the numerical results also
suggest, in accordance with the presented theory, that the iterates do not necessarily
converge towards the correct steady state solution of the underlying problem if the
system of differential equations possesses linear invariants.

Future works include the investigation of higher-order semi-implicit Runge–Kutta
schemes. Thereby, the derivation of Lyapunov stability properties and the time step
restrictions coming from the necessary condition for avoiding oscillatory behavior
are of great interest. Moreover, we aim to investigate these stability properties also
in the context of hyperbolic balance laws.
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Fig. 3: Error as a function of time for the case of c = 1, ε = 10−5, t∗(c, ε) ≈ 5.76.
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Fig. 4: Error as a function of time for the case of c = 5, ε = 10−5, t∗(c, ε) ≈ 1.15.
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