Numerical Methods for Compressible Flows 

My current research centers around numerical methods primarily applied to compressible flows. I specifically concentrate on the implementation and analysis of finite difference (FD) and finite element schemes (FE) such as continuous and discontinuous Galerkin (CG/DG), flux reconstruction (FR), and residual distribution (RD) schemes.

My primary focus lies in examining the stability and approximation properties of these schemes. To aid in this analysis, I employ summation-by-parts (SBP) operators, which enable the translation of results from the continuous setting to the discrete framework. In this regard, we have expanded the existing theory by incorporating general function spaces, resulting in what we refer to as FSBP operators.

Using these FSBP operators, we have successfully developed energy-stable RBF methods tailored to hyperbolic problems. This advancement has allowed us to enhance the accuracy and stability of our numerical approaches in the context of compressible flow simulations. In the future, 

we plan to investigate error bounds of the new approach and build adaptive and stable FSBP schemes.

Research Highlights:

  • Building structure-preserving and stable high-order FE methods 
  • Developing and construction of function-space summation-by-parts (FSBP) operators and applying them in classical FD/FE schemes 
  • Error analysis
  • Extension of FSBP  theory to meshless approaches like radial basis function methods 
  • Machine learning approaches in CFD 

Time Integration Schemes  

The issue of stability holds significant importance when it comes to numerical methods applied to hyperbolic conservation laws and has garnered considerable attention. However, the existing studies often assume continuity in time, focusing solely on semidiscrete stability without considering the time integration method. In my research, I address this gap by emphasizing the construction of fully discrete entropy stable schemes.

To achieve this, I explore various techniques such as the relaxation technique or the implementation of modal filters/artificial viscosity. These approaches enable me to construct explicit entropy stable schemes that are fully discrete. Additionally, I delve into investigating the stability properties of DeC, Ader, and RK methods, with a specific emphasis on establishing connections between these schemes.

Another aspect of my work involves developing time integration methods that preserve positivity. I have successfully designed a modified Patankar DeC scheme that is conservative, preserves positivity, and can achieve arbitrary high-order accuracy.

Moving forward, my research will be dedicated to exploring the stability properties of these modified Patankar schemes, further enhancing our understanding of their behavior.

Research Highlights:

  • Construction of fully discrete (entropy) stable schemes 
  • Development of arbitrary high order, positivity preserving and conservative modified Patankar DeC Schemes
  • Stability analysis for modified Patanker schemes
  • Application of mPDeC to advection dominated problems              (e.g. SW equations, Euler with Gravity)

Dissipative Weak Solutions

The Cauchy problem associated with the complete Euler system typically exhibits ill-posedness when considering admissible (entropy) weak solutions. Consequently, the utilization of measure-valued solutions has emerged as a more suitable approach for analysis in recent times. In my research at Mainz, I focus on investigating the existence of dissipative solutions and the convergence of entropy stable finite element (FE) based schemes applied to the complete compressible Euler equations in multidimensional scenarios.

My objective is to demonstrate that the Young measure generated by numerical solutions effectively represents a dissipative (measure-valued) weak solution of the Euler system. To achieve this, I must delve into stability and consistency estimations within this context. Moreover, I am expanding my investigation to encompass more intricate systems and explore alternative methods. By doing so, I aim to enhance our understanding of these complex systems and advance the current knowledge in this field.

Research Highlights: 

  • Convergence results for specific DG, RD and CG schemes
  • Extensions to high-order schemes
  • A priori error estimates. 

Uncertainty Quantification 

I have previously conducted research on uncertainty quantification (UQ) within the realm of hyperbolic problems. Specifically, I employed the polynomial chaos approach to analyze Burgers' Equation, utilizing SBP-FR/DG methods. Remarkably, we achieved a groundbreaking feat by successfully constructing entropy stable numerical fluxes. Currently, my focus lies on expanding this work to encompass the Shallow Water (SW) system, aiming to develop similar advancements in this domain.

In the future, my research efforts will be primarily concentrated on this topic, with a particular emphasis on real-world applications. As the resulting systems are expected to be vast and characterized by the presence of shocks, my investigations will incorporate shock sensors and model order reduction techniques. These strategies will play a crucial role in managing the computational challenges posed by these large-scale systems and enhancing the efficiency of the numerical methods employed.

Research Highlights:

  • Construction of entropy stable numerical fluxes for FR methods using the polynomial chaos approach for Burgers' equation and the shallow water model.
  • Investigation of non-strictly hyperbolic systems 
  • Error analysis for mixed systems 


The list of authors of mathematical publications is mainly in alphabetical order.

Published Articles (Journals): 

  1. J. Bender, P. Öffner - Entropy-conservative discontinuous Galerkin methods for the shallow water equations with uncertainty, Communications on Applied Mathematics and Computation, 2024. (doi). 
  2. J. Glaubitz, S.-Ch. Klein, J. Nordström, P. Öffner - Summation-by-parts operators for general function spaces: The second derivative - Journal of Computational Physics 504, 2024. (doi).
  3. J. Glaubitz, J. Nordström, and P. Öffner - Energy-stable global radial basis function methods on summation-by-parts form
    - Journal of Scientific Computing 98(30), 2024. (doi).
  4. Y. Mantri, P. Öffner, M. Ricchiuto - Fully well balanced entropy controlled discontinuous Galerkin spectral element method  for shallow water flows: global flux quadrature and cell entropy correction - Journal of Computational Physics 498, 2024. (doi).
  5. D. Hillebrand, S.-Ch. Klein, and P. Öffner - Comparison to control oscillations in high-order FD/FV schemes via physical constraint limiters, neural networks and polynomial annihilation - Journal of Scientific Computing 97(13), 2023. (doi).
  6. J. Glaubitz, S.-Ch. Klein, J. Nordström, P. Öffner - Multi-dimensional summation-by-parts operators for general function spaces: Theory and construction - Journal of Computational Physics 491, 2023. (doi).
  7. Th. Izgin and P. Öffner - A study of the local dynamics of modified Patankar DeC and higher order modified Patankar-RK methods - ESAIM: Mathematical Modelling and Numerical Analysis, 57, 2319 - 2348, 2023. (doi).
  8. F. Mojarrad, M. Han Veiga, J. Hesthaven, P. Öffner - A new variable shape parameter strategy for RBF approximation using neural networks - Computers and Mathematics with Applications, 143, 151 - 168, 2023. (doi).
  9. R. Abgrall, M. Lukácová-Medvidová, P. Öffner - On the convergence of RD schemes for the compressible Euler equations via dissipative weak solutions - M3AS: Mathematical Models and Methods in Applied Sciences, 01 (33), 2023. (doi).
  10. E. Gaburro, P. Öffner, M. Ricchiuto, and D. Torlo - High order entropy preserving ADER scheme - Applied Mathematics and Computation, 440, 2023. (doi).
  11. J. Glaubitz, J. Nordström, and P. Öffner - Summation-by-parts operators for general function spaces - SIAM Journal on Numerical Analysis, 61, 2,  2023. (doi).
  12. M. Lukácová-Medvidová and P. Öffner - Convergence of Discontinuous Galerkin Schemes for the Euler Equations via Dissipative Weak Solutions - Applied Mathematics and Computation, 436, 2023. (doi).
  13. M. Ciallella, L. Micalizzi, P. Öffner, and D. Torlo - An Arbitrary High Order and Positivity Preserving Method for the Shallow Water Equations Computer & Fluids, 247, 2022. (doi).
  14. D. Torlo, P. Öffner and H. Ranocha - Issues with Positivity-Preserving Patankar-type Schemes - Applied Numerical Mathematics, 182, 117 - 147, 2022. (doi).
  15. R. Abgrall, E. Le Mèlèdo, P. Öffner, Davide Torlo - Relaxation Deferred Correction Methods  and their Applications to Residual Distribution Schemes - SMAI-Journal of Computational Mathematics 8, 125 - 160, 2022. (doi).
  16. R. Abgrall, P. Öffner, H. Ranocha - Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes - Journal of Computational Physics453, 2022. (doi).
  17. J. Glaubitz, E. Le Mèlèdo, P. Öffner - Towards Stable Radial Basis Function Methods for Linear Advection Problems - Computers and Mathematics with Applications 85, 84 - 97, 2021. (doi)
  18. R. Abgrall, J. Nordström, P. Öffner, S. Tokareva - Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability - Communications on Applied Mathematics and Computation, 2021.  (doi).
  19. M. Han Veiga, P. Öffner, D.Torlo - DeC and ADER: Similarities, Differences, and a Unified Framework - Journal of Scientific Computing 87(2), 2021. (doi).
  20. E. le Mèlèdo, P. Öffner, R. Abgrall - General polytopial H(div) conformal finite elements and their discretisation spaces - ESAIM: Mathematical Modelling and Numerical Analysis 55, 677 - 704,  2021. (doi).
  21. R. Abgrall, J. Nordström, P. Öffner, S. Tokareva - Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I: Linear Problems - Journal of Scientific Computing 85, 2020. (doi).
  22. P. Öffner, D. Torlo - Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes - Applied Numerical Mathematics 153, 15 - 34, 2020. (doi).

  23. J. Glaubitz, P. Öffner - Stable discretisations of high order discontinuous Galerkin methods on equidistant and scattered points - Applied Numerical Mathematics 151, 98 - 118, 2020. (doi).

  24. P. Öffner, J. Glaubitz, H. Ranocha - Analysis of Artificial Dissipation of Explicit and Implicit Time-Integration Methods - International Journal of Numerical Analysis and Modeling 17.3, 332 - 349, 2020. (doi).

  25. P. Öffner, H. Ranocha - Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients - Journal of Scientific Computing 79(3), 1572 - 1607, 2019. (doi).

  26. P. Öffner, J. Glaubitz, H. Ranocha - Polynomial Chaos Method for the Burgers’ Equation using Correction Procedure via Reconstruction with Summation-by-Parts Operators - ESAIM: Mathematical Modelling and Numerical Analysis 52(6), 2215 2245, 2018. (doi).

  27. H. Ranocha, J. Glaubitz, P. Öffner, Th. Sonar - Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators - Applied Numerical Mathematics 128, 1–23, 2018. (doi).

  28. J. Glaubitz, P. Öffner, Th. Sonar - Application of Modal Filtering to a Spectral Difference Method - Mathematics of Computation 87(309), 175–207, 2018. (doi).

  29. H. Ranocha, P. Öffner - L2 Stability of Explicit Runge-Kutta Schemes - Journal of Scientific Computing 75(2), 1040–1056, 2018. (doi).

  30. H. Ranocha, P. Öffner, Th. Sonar - Extended Skew-Symmetric Form for Summation-by-Parts Operators and Varying Jacobians - Journal of Computational Physics 342, 13–28, 2017. (doi).

  31. H. Ranocha, P. Öffner, Th. Sonar - Summation-by-parts operators for correction procedure via reconstruction - Journal of Computational Physics 311, 299–328, 2016. (doi).

  32. P. Öffner, Th. Sonar, M. Wirz - Detecting strength and location of jump discontinuities in numerical data - Applied Mathematics 4, (12A), 1–14, 2013. (doi).

  33. P. Öffner, Th. Sonar - Spectral convergence for orthogonal polynomials on triangles - Numerische Mathematik 124 (4), 701–721, 2013. (doi).

Pre-prints and Technical Reports:

  1. J. Glaubitz, H. Ranocha, A. R. Winters, M. Schlottke-Lakemper, P. Öffner, G. J. Gassner - Generalized upwind summation-by-parts operators and their application to nodal discontinuous Galerkin methods, arXiv:arXiv:2406.14557, 2024. (arXiv).
  2. J. Glaubitz, J. Nordström, P. Öffner - An optimization-based construction procedure for function space based summation-by-parts operators on arbitrary grids, arXiv: arXiv:2405.08770, 2024.(arXiv).
  3. P. Öffner, L. Petri, and D. Torlo -  Analysis for Implicit and Implicit-Explicit ADER and DeC Methods for Ordinary Differential Equations, Advection-Diffusion and Advection-Dispersion Equations, arXiv: arXiv:2404.18626, 2024. (arXiv).

  4. M. Ciallella, L. Micalizzi, V. Michel-Dansac, P. Öffner, and D. Torlo - A high-order, fully well-balanced, unconditionally positivity-preserving finite volume framework for flood simulations, arXiv:arXiv:2402.12248, 2024. (arXiv).

  5. H. Ranocha, A. R. Winters, M. Schlottke-Lakemper, P. Öffner, J. Glaubitz, G. J. Gassner - High-order upwind summation-by-parts methods for nonlinear conservation laws, arXiv: arXiv:2311.13888, 2023. (arXiv).

  6. D. Kuzmin, M. Lukácová-Medvidová, P. Öffner - Consistency and convergence of flux-corrected finite element methods for nonlinear hyperbolic problems - arXiv:2308.14872, 2023. (arXiv).
  7. A. Chertock, Th. Izgin, P. Öffner - A Stability Analysis of a Semi-implicit Runge–Kutta Scheme for a Nonlinear System, 2023. (Preprint).
  8. S.-Ch. Klein and P. Öffner - Entropy conservative high-order fluxes in the presence of boundaries - arXiv:2211.01171, 2022.(arXiv).

  9. R. Abgrall, E. le Mèlèdo, and P. Öffner -A class of finite-dimensional spaces and H(div) conformal elements on general polytopes - arXiv:1907.08678, 2019. (arXiv).
  10. R. Abgrall, E. Le Mèlèdo, and P. Öffner- On the Connection between Residual Distribution Schemes and Flux Reconstruction - hal-01820176, arXiv:1807.01261, 2019. (arXiv).
  11. P. Öffner - Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction - arXiv:1806.01575, 2019. (arXiv).
  12. R. Goertz, P. Öffner - On Hahn polynomial expansion of a continuous function of bounded variation - arXiv:1610.06748, 2016. (arXiv).
  13. R. Goertz, P. Öffner - Spectral accuracy for the Hahn polynomials - arXiv:1609.07291, 2016. (arXiv).

Published (Conference Proceedings):

  1. R. Abgrall, D. Breit, D. Kuzmin, T. Moyo, M. Lukácová-Medvidová, P. Öffner - Convergence of structure-preserving FE schemes for the Euler equations - Extension to the stochastic Euler system - Oberwolfach Report, 2024.

  2. Th. Izgin, P, Öffner, D. Torlo - A necessary condition for non oscillatory and positivity preserving time-integration schemes -accepted in Proceedings of HYP2022, arXiv:2211.08905, 2022.(arXiv).
  3. R. Abgrall, P. Öffner, H. Ranocha - Extension of Entropy Correction Terms for Residual Distribution Schemes: Application to Structure Preserving Discretization - Oberwolfach Report 11, 2021.
  4. M. Han Veiga, P. Öffner, D.Torlo - DeC and ADER: arbitrarily high order methods for hyperbolic PDEs (and ODEs) -Oberwolfach Report 11, 2021.
  5. R. Abgrall, E. le Mèlèdo, P. Öffner, H. Ranocha - Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction and the Connection to Residual Distribution Schemes - Hyperbolic Problems: Theory, Numerics, Applications - Proceedings of HYP2018, 2020.

  6. J. Glaubitz, P. Öffner, H. Ranocha, Th. Sonar - Artificial Viscosity for CPR Methods Using SBP Operators - Springer Proceedings in Mathematics and Statistics: Proceeding of the XVI International Conference on Hyperbolic Problems Theory, Numerics, Applications, Aachen, 363-375, 2016. 

  7. P. Öffner, H. Ranocha, Th. Sonar - Correction Procedure via Reconstruction Using Summation-by- Parts Operators - Springer Proceedings in Mathematics and Statistics: Proceeding of the XVI International Conference on Hyperbolic Problems Theory, Numerics, Applications, Aachen, 491-501, 2016. 

  8. H.Ranocha, P. Öffner, Th. Sonar - Summation-by-Parts and Correction Procedure via Reconstruction - Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Ed. by M. L. Bittencourt, N. A. Dumont, J. S. Hesthaven. Vol. 119. Lecture Notes in Computational Science and Engineering. Cham: Springer, 627-637, 2017. 

  9. P. Öffner, Th. Sonar - Orthogonal Polynomials and their Application in a Spectral Difference Method - Oberwolfach Report 41, 2015. 

  10. P. Öffner, Th. Sonar - Spectral Approximation with Appell Polynomials - NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: Proceeding of the International Conference on Numerical Analysis and Applied Mathematics, Halkidiki, 2011. 


  • Approximation and Stability Properties of Numerical Methods for Hyperbolic Conservation Laws - Habilitation Thesis (submitted, 6.8.2020), University Zurich, Springer Spektrum, 2023. (Book). 

  • Two-dimensional classical and discrete orthogonal polynomials and their applications to spectral methods to solve hyperbolic conservations laws - Dissertation, TU Braunschweig, 2015.

Developed Codes:

  1. J. Glaubitz, J. Nordström, P. Öffner - SBP-Construction, 2024, (git).
  2. P. Öffner, L. Petri, D.Torlo - IMEX-DeC-ADER, 2024, (git).
  3. J. Glaubitz, J. Nordström, P. Öffner - Energy Stable RBF, 2022, (git). 
  4. M. Ciallella, L. Micalizzi, P. Öffner, and D. Torlo - Modified Patankar Deferred Correction WENO Code for Shallow Water Equations, 2021, (git). 

  5. D. Torlo, P. Öffner and H. Ranocha -  Stability of Positivity Preserving Patankar-Type Schemes, 2021, (git).

  6. R. Abgrall, P. Bacigaluppi, L. Micalizzi, P. Öffner, S. Tokareva, D. Torlo and F. Mojarrad - 

    Residual Distribution high order code, 2021, (git).

  7. R. Abgrall, E. le Mèlèdo, P. Öffner, and D. Torlo - Relaxation DeC, 2021, (git).
  8. M. Han Veiga, P. Öffner, and D. Torlo - DeC is ADER, 2020, (git).

  9. P. Öffner and D. Torlo - Deferred Correction Patankar scheme, 2019, (git).